Edge-hamiltonian property in regular 2- connected graphs
نویسندگان
چکیده
منابع مشابه
2-edge-Hamiltonian-connectedness of 4-connected plane graphs
A graph G is called 2-edge-Hamiltonian-connected if for any X ⊂ {x1x2 : x1, x2 ∈ V (G)} with 1 ≤ |X| ≤ 2, G ∪ X has a Hamiltonian cycle containing all edges in X, where G ∪ X is the graph obtained from G by adding all edges in X. In this paper, we show that every 4-connected plane graph is 2edge-Hamiltonian-connected. This result is best possible in many senses and an extension of several known...
متن کاملGenerating connected and 2-edge connected graphs
We focus on the algorithm underlying the main result of [6]. This is an algebraic formula to generate all connected graphs in a recursive and efficient manner. The key feature is that each graph carries a scalar factor given by the inverse of the order of its group of automorphisms. In the present paper, we revise that algorithm on the level of graphs. Moreover, we extend the result subsequentl...
متن کاملThe Hamiltonian Connected Property of Some Shaped Supergrid Graphs
A Hamiltonian path (cycle) of a graph is a simple path (cycle) which visits each vertex of the graph exactly once. The Hamiltonian path (cycle) problem is to determine whether a graph contains a Hamiltonian path (cycle). A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. Supergrid graphs were first introduced by us and include grid grap...
متن کاملSome 3-connected 4-edge-critical non-Hamiltonian graphs
Let (G) be the domination number of graph G, thus a graph G is k -edge-critical if (G) 1⁄4 k ; and for every nonadjacent pair of vertices u and v, (Gþ uv) 1⁄4 k 1. In Chapter 16 of the book ‘‘Domination in Graphs— Advanced Topics,’’ D. Sumner cites a conjecture of E. Wojcicka under the form ‘‘3-connected 4-critical graphs are Hamiltonian and perhaps, in general (i.e., for any k 4), (k 1)-connec...
متن کامل2-connected and 2-edge-connected Steinhaus graphs
The numbers of 2-connected and 2-edge-connected Steinhaus graphs with n vertices are determined for n¿ 6. The possible generating strings of 2-connected and 2-edge-connected Steinhaus graphs are classi0ed. c © 2002 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1990
ISSN: 0012-365X
DOI: 10.1016/0012-365x(90)90042-g